Leveraging u-net architecture for accurate localization in brain tumor segmentation
This study presents an approach based on deep learning to segment brain tumors in medical imaging accurately. The segmentation of brain tumors plays a crucial role in diagnosing, planning treatments, and monitoring disease progression. However, existing methods have limitations such as time-consumin...
保存先:
主要な著者: | Poo, Jeckey Ng Kah, Saealal, Muhammad Salihin, Ibrahim, Mohd Zamri, Yakno, Marlina |
---|---|
フォーマット: | Conference or Workshop Item |
言語: | English |
出版事項: |
2023
|
オンライン・アクセス: | http://eprints.utem.edu.my/id/eprint/27999/1/Leveraging%20U-Net%20architecture%20for%20accurate%20localization%20in%20brain%20tumor%20segmentation.pdf http://eprints.utem.edu.my/id/eprint/27999/ https://ieeexplore.ieee.org/document/10419915 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Leveraging u-net architecture for accurate localization in brain tumor segmentation
著者:: Poo, Jeckey Ng Kah, 等
出版事項: (2023) -
BTIS-Net: Efficient 3D U-Net for Brain Tumor Image Segmentation
著者:: Liu, Li, 等
出版事項: (2024) -
Brain lesion image segmentation using modified U-NET architecture
著者:: Lee, Xin Yin, 等
出版事項: (2024) -
Segmentation method for pathological brain tumor and accurate detection using MRI
著者:: Ejaz, Khurram, 等
出版事項: (2018) -
Development of brain tumor segmentation of magnetic resonance imaging (MRI) using u-net deep learning
著者:: Jwaid W.M., 等
出版事項: (2023)