Improving Time Series Models Prediction Based On Empirical Mode Decomposition Using Stock Market Data
Time series analysis and prediction is a very important and active research area. In this age of profuse data generation, proper use of available data has become crucial in forecasting and decision making. This thesis presents the research study involving the development of five advanced forecasting...
保存先:
第一著者: | Hossain, Mohammad Raquibul |
---|---|
フォーマット: | 学位論文 |
言語: | English |
出版事項: |
2021
|
主題: | |
オンライン・アクセス: | http://eprints.usm.my/53227/1/MOHAMMAD%20RAQUIBUL%20HOSSAIN%20-%20TESIS24.pdf http://eprints.usm.my/53227/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Empirical Mode Decomposition based on Theta Method for Forecasting Daily Stock Price
著者:: Hossain, Mohammad Raquibul, 等
出版事項: (2020) -
Empirical mode decomposition based on theta
method for forecasting daily stock price
著者:: Hossain, Mohammad Raquibul, 等
出版事項: (2020) -
Forecasting Performance Of Nonlinear And Nonstationary Stock Market Data Using Empirical Mode Decomposition
著者:: Awajan, Ahmad Mohammad Al-Abd
出版事項: (2018) -
Application of empirical mode decomposition in improving group method of data handling.
著者:: Abdul Razif, Nur Rafiqah, 等
出版事項: (2023) -
Application of Empirical Mode Decomposition with Local Linear
Quantile Regression in Financial Time Series Forecasting
著者:: M. Jaber, Abobaker, 等