Metamorphic malware detection using structural features and nonnegative matrix factorization with hidden markov model

Metamorphic malware modifies its code structure using a morphing engine to evade traditional signature-based detection. Previous research has shown the use of opcode instructions as feature representation with Hidden Markov Model in the context of metamorphic malware detection. However, it would be...

詳細記述

保存先:
書誌詳細
主要な著者: Ling, Yeong Tyng, Mohd Sani, Nor Fazlida, Abdullah, Mohd Taufik, Abdul Hamid, Nor Asilah Wati
フォーマット: 論文
出版事項: Springer Cham 2021
オンライン・アクセス:http://psasir.upm.edu.my/id/eprint/94169/
https://link.springer.com/article/10.1007/s11416-021-00404-z
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

類似資料