Metamorphic malware detection using structural features and nonnegative matrix factorization with hidden markov model
Metamorphic malware modifies its code structure using a morphing engine to evade traditional signature-based detection. Previous research has shown the use of opcode instructions as feature representation with Hidden Markov Model in the context of metamorphic malware detection. However, it would be...
保存先:
主要な著者: | Ling, Yeong Tyng, Mohd Sani, Nor Fazlida, Abdullah, Mohd Taufik, Abdul Hamid, Nor Asilah Wati |
---|---|
フォーマット: | 論文 |
出版事項: |
Springer Cham
2021
|
オンライン・アクセス: | http://psasir.upm.edu.my/id/eprint/94169/ https://link.springer.com/article/10.1007/s11416-021-00404-z |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Metamorphic malware detection using structural features and nonnegative matrix factorization with hidden markov model
著者:: Ling, Yeong Tyng, 等
出版事項: (2021) -
Structural features with nonnegative matrix factorization for metamorphic malware detection
著者:: Yeong, Tyng Ling, 等
出版事項: (2021) -
Nonnegative matrix factorization and metamorphic malware detection
著者:: Ling, Yeong Tyng, 等
出版事項: (2019) -
Nonnegative matrix factorization and metamorphic malware
detection
著者:: Ling, Yeong Tyng, 等
出版事項: (2019) -
Short review on metamorphic malware detection in Hidden Markov Models
著者:: Yeong, T. Ling, 等
出版事項: (2017)