A total norm of τ-adic non-adjacent form occurring among all element of ℤ(τ): an alternative formula
In this paper, we give an alternative formula of total norms for τ-Adic Non-adjacent Forms (τ-NAF) expansion for an integer n element of ℤ(τ) in Koblitz curve. We apply the geometric series formula to simplify some series involving floor functions in total norms formula. With this approach, we can e...
保存先:
主要な著者: | , , |
---|---|
フォーマット: | Conference or Workshop Item |
言語: | English |
出版事項: |
AIP Publishing
2016
|
オンライン・アクセス: | http://psasir.upm.edu.my/id/eprint/57643/1/A%20total%20norm%20of%20%CF%84-adic%20non-adjacent%20form%20occurring%20among%20all%20element%20of%20%E2%84%A4%28%CF%84%29%20an%20alternative%20formula.pdf http://psasir.upm.edu.my/id/eprint/57643/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
要約: | In this paper, we give an alternative formula of total norms for τ-Adic Non-adjacent Forms (τ-NAF) expansion for an integer n element of ℤ(τ) in Koblitz curve. We apply the geometric series formula to simplify some series involving floor functions in total norms formula. With this approach, we can evaluate the total norm by using the length of τ-NAF expansion. |
---|