Improving generalization in backpropagation networks architectures
This paper gives a prototype recognizer that uses rough reduction module to find the optimal representation for backpropagation networks. The proposed approach exhibits a hybrid methodology for feedforward neural networks and rough set theory. The system is a two stand alone subsystems, in which the...
保存先:
主要な著者: | Ali Adlan, Hanan Hassan, Ramli, Abd Rahman, Mohd Babiker, Elsadig Ahmed |
---|---|
フォーマット: | Conference or Workshop Item |
言語: | English |
出版事項: |
2005
|
オンライン・アクセス: | http://psasir.upm.edu.my/id/eprint/38992/1/38992.pdf http://psasir.upm.edu.my/id/eprint/38992/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Rough Neural Networks Architecture For Improving Generalization In Pattern Recognition
著者:: Ali Adlan, Hanan Hassan
出版事項: (2004) -
Multi-Backpropagation network
著者:: Wan Ishak, Wan Hussain, 等
出版事項: (2002) -
The Impact of Normalization Techniques on Performance Backpropagation Networks
著者:: Norlida, Hassan
出版事項: (2004) -
Tuning of learning parameters for backpropagation network using an improved genetic algorithm
著者:: Ng, Chai Ling
出版事項: (2006) -
Multi-backpropagation network in medical diagnosis
著者:: Wan Ishak, Wan Hussain, 等
出版事項: (2001)