The generalized localization for multiple Fourier integrals.

In this paper we investigate almost-everywhere convergence properties of the Bochner–Riesz means of N-fold Fourier integrals under summation over domains bounded by the level surfaces of the elliptic polynomials. It is proved that if the order of the Bochner–Riesz means s⩾(N−1)(1/p−1/2), then the Bo...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Ashurov , Ravshan, Ahmedov, Anvarjon, Mahmud , Ahmad Rodzi
التنسيق: مقال
اللغة:English
English
منشور في: Academic Press Inc. 2010
الوصول للمادة أونلاين:http://psasir.upm.edu.my/id/eprint/17168/1/The%20generalized%20localization%20for%20multiple%20Fourier%20integrals.pdf
http://psasir.upm.edu.my/id/eprint/17168/
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:In this paper we investigate almost-everywhere convergence properties of the Bochner–Riesz means of N-fold Fourier integrals under summation over domains bounded by the level surfaces of the elliptic polynomials. It is proved that if the order of the Bochner–Riesz means s⩾(N−1)(1/p−1/2), then the Bochner–Riesz means of a function f∈Lp(RN), 1⩽p⩽2 converge to zero almost-everywhere on RN∖supp(f).