A derivative-free optimization method for solving classification problem

Problem statement: The aim of data classification is to establish rules for the classification of some observations assuming that we have a database, which includes of at least two classes. There is a training set for each class. Those problems occur in a wide range of human activity. One of the mos...

全面介紹

Saved in:
書目詳細資料
Main Authors: Shabanzadeh, Parvaneh, Abu Hassan, Malik, Leong, Wah June
格式: Article
語言:English
出版: Science Publications 2010
在線閱讀:http://psasir.upm.edu.my/id/eprint/12683/1/12683.pdf
http://psasir.upm.edu.my/id/eprint/12683/
http://thescipub.com/abstract/10.3844/jcssp.2010.369.373
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Problem statement: The aim of data classification is to establish rules for the classification of some observations assuming that we have a database, which includes of at least two classes. There is a training set for each class. Those problems occur in a wide range of human activity. One of the most promising ways to data classification is based on methods of mathematical optimization. Approach: The problem of data classification was studied as a problem of global, nonsmooth and nonconvex optimization; this approach consists of describing clusters for the given training sets. The data vectors are assigned to the closest cluster and correspondingly to the set, which contains this cluster and an algorithm based on a derivative-free method is applied to the solution of this problem. Results: Proposed method had been tested on real-world datasets. Results of numerical experiments had been presented which demonstrate the effectiveness of the proposed algorithm. Conclusion: In this study we had studied a derivative-free optimization approach to the classification. For optimization generalized pattern search method has been applied. The results of numerical experiments allowed us to say the proposed algorithms are effective for solving classification problems at least for databases considered in this study.