A maximal-clique-based clustering approach for multi-observer multi-view data by using k-nearest neighbor with S-pseudo-ultrametric induced by a fuzzy similarity

Partitioning multi-view data is a recent challenge in clustering methods, which traditionally consider single-view data. In clustering techniques, finding the similarity or distance between objects, handled by metrics in Rn, plays a central role in community detection. Under this framework, differen...

詳細記述

保存先:
書誌詳細
主要な著者: Khameneh, Azadeh Zahedi, Ghaznavi, Mehrdad, Kilicman, Adem, Mahad, Zahari, Mardani, Abbas
フォーマット: 論文
出版事項: Springer Science and Business Media Deutschland GmbH 2024
オンライン・アクセス:http://psasir.upm.edu.my/id/eprint/112041/
https://link.springer.com/article/10.1007/s00521-024-09560-x
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

類似資料