Predicting building damage grade by earthquake: a Bayesian Optimization-based comparative study of machine learning algorithms
This study compares Bayesian Optimization-based machine learning systems that anticipate earthquake-damaged buildings and to evaluates building damage classification models. Using metrics, this study evaluates Random Forest, ElasticNet, and Decision Tree algorithms. This study showed damage level as...
保存先:
主要な著者: | Al-Rawashdeh, Mohammad, Al Nawaiseh, Moh’d, Yousef, Isam, Bisharah, Majdi, Alkhadrawi, Sajeda, Al-Bdour, Hamza |
---|---|
フォーマット: | 論文 |
出版事項: |
Springer Cham
2024
|
オンライン・アクセス: | http://psasir.upm.edu.my/id/eprint/105841/ https://link.springer.com/article/10.1007/s42107-023-00771-6 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Evaluation and prediction of time overruns in Jordanian construction projects using coral reefs optimization and deep learning methods
著者:: Shihadeh, Jumana, 等
出版事項: (2024) -
Assessment Of The Performance Loss And Repairabiity Of Earthquake Damaged Reinforced Concrete Buildings Under Repeated Earthquake
著者:: Tai, Joon Hong
出版事項: (2017) -
Applying machine learning and particle swarm optimization for predictive modeling and cost optimization in construction project management
著者:: almahameed, Bader aldeen, 等
出版事項: (2024) -
Nonstructural Damages of Reinforced Concrete Buildings Due to 2015 Ranau Earthquake
著者:: M. I., Adiyanto, 等
出版事項: (2017) -
Bayesian Network Classifiers for Damage Detection in Engineering Material
著者:: Mohamed Addin, Addin Osman
出版事項: (2007)