Synthetic Minority Over-Sampling Technique (SMOTE) and Logistic Model Tree (LMT)-adaptive boosting algorithms for classifying imbalanced datasets of nutrient and chlorophyll sufficiency levels of oil palm (Elaeis guineensis) using spectroradiometers and unmanned aerial vehicles
The conventional method to quantify leaf biochemical properties (nutrients and chlorophylls) is tedious, labour-intensive, and impractical for vast oil palm plantation areas. Spectral analysis retrieved from a spectroradiometer and an unmanned aerial vehicle (UAV) and imbalanced approaches such as t...
保存先:
主要な著者: | , , , , |
---|---|
フォーマット: | 論文 |
出版事項: |
Elsevier
2022
|
オンライン・アクセス: | http://psasir.upm.edu.my/id/eprint/103414/ https://www.sciencedirect.com/science/article/pii/S0168169921006633 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
このレコードへの初めてのコメントを付けませんか!