Impact of Resampling and Deep Learning to Detect Anomaly in Imbalance Time-Series Data
Deep neural networks; Time series; Anomaly detection; Capture time; Data imbalance; Electricity theft detection; Imbalance time series data; Over sampling; Resampling; Resampling technique; Time-series data; Under-sampling; Anomaly detection
Saved in:
Main Authors: | Saripuddin M., Suliman A., Sameon S.S. |
---|---|
其他作者: | 57220806580 |
格式: | Conference Paper |
出版: |
Institute of Electrical and Electronics Engineers Inc.
2023
|
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Random Undersampling on Imbalance Time Series Data for Anomaly Detection
由: Saripuddin M., et al.
出版: (2023) -
Handling class imbalance in credit card fraud using resampling methods
由: Hordri, Nur Farhana, et al.
出版: (2018) -
Data generative model to detect the anomalies for IDS imbalance CICIDS2017 dataset
由: Barkah, Azhari Shouni, et al.
出版: (2023) -
Improving Class Imbalance Detection And Classification Performance: A New Potential of Combination Resample and Random Forest
由: Zakaria A.Z., et al.
出版: (2023) -
Anomaly Detection in Time Series Data Using Spiking Neural Network
由: Bariah, Yusob, et al.
出版: (2018)