Multiple linear regression for reconstruction of gene regulatory networks in solving cascade error problems
Gene regulatory network (GRN) reconstruction is the process of identifying regulatory gene interactions from experimental data through computational analysis. One of the main reasons for the reduced performance of previous GRN methods had been inaccurate prediction of cascade motifs. Cascade error i...
Saved in:
Main Authors: | Salleh F.H.M., Zainudin S., Arif S.M. |
---|---|
其他作者: | 26423229000 |
格式: | Article |
出版: |
Hindawi Publishing Corporation
2023
|
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
Reconstruction of Large-Scale Gene Regulatory Networks Using Regression-based Models
由: Mohamed Salleh, F.H., et al.
出版: (2020) -
Reconstruction of Large-Scale Gene Regulatory Networks Using Regression-based Models
由: Mohamed Salleh F.H., et al.
出版: (2023) -
Reconstructing gene regulatory networks from knock-out data using Gaussian Noise Model and Pearson Correlation Coefficient
由: Mohamed Salleh F.H., et al.
出版: (2023) -
Parameter estimation in the presence of heteroscedastic error and outliers in multiple linear regression
由: Adnan , Robiah
出版: (2013) -
Standard errors estimation in the presence of high leverage point and heteroscedastic errors in multiple linear regression
由: Khoo, Li Peng, et al.
出版: (2013)