Multiple linear regression for reconstruction of gene regulatory networks in solving cascade error problems
Gene regulatory network (GRN) reconstruction is the process of identifying regulatory gene interactions from experimental data through computational analysis. One of the main reasons for the reduced performance of previous GRN methods had been inaccurate prediction of cascade motifs. Cascade error i...
保存先:
主要な著者: | Salleh F.H.M., Zainudin S., Arif S.M. |
---|---|
その他の著者: | 26423229000 |
フォーマット: | 論文 |
出版事項: |
Hindawi Publishing Corporation
2023
|
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Reconstruction of Large-Scale Gene Regulatory Networks Using Regression-based Models
著者:: Mohamed Salleh, F.H., 等
出版事項: (2020) -
Reconstruction of Large-Scale Gene Regulatory Networks Using Regression-based Models
著者:: Mohamed Salleh F.H., 等
出版事項: (2023) -
Reconstructing gene regulatory networks from knock-out data using Gaussian Noise Model and Pearson Correlation Coefficient
著者:: Mohamed Salleh F.H., 等
出版事項: (2023) -
Parameter estimation in the presence of heteroscedastic error and outliers in multiple linear regression
著者:: Adnan , Robiah
出版事項: (2013) -
Standard errors estimation in the presence of high leverage point and heteroscedastic errors in multiple linear regression
著者:: Khoo, Li Peng, 等
出版事項: (2013)