Face recognition using artificial neural networks in parallel architecture

Face detection and recognition is the main aspect for different important areas such as video surveillance, biometrics, interactive game applications, human computer interaction and access control systems. These systems require fast real time detection and recognition with high recognition rate. In...

全面介绍

Saved in:
书目详细资料
Main Authors: Omarov B., Suliman A., Kushibar K.
其他作者: 57202103462
格式: Article
出版: Asian Research Publishing Network 2023
标签: 添加标签
没有标签, 成为第一个标记此记录!
实物特征
总结:Face detection and recognition is the main aspect for different important areas such as video surveillance, biometrics, interactive game applications, human computer interaction and access control systems. These systems require fast real time detection and recognition with high recognition rate. In this paper we propose implementation of the Artificial Neural Network by using high performance computing architecture based on Graphics Processing Unit to get face recognition with high accuracy and more speedup. There, we consider a parallel training approach for backpropagation algorithm for face recognition. For the high performance of face recognition it was used Compute Unified Device Architecture (CUDA) on a GPU. The experimental results demonstrate a significant decrease on executing times and greater speedup than serial implementation. � 2005 - 2016 JATIT & LLS. All rights reserved.