Implementing generative adversarial network (GAN) as a data-driven multi-site stochastic weather generator for flood frequency estimation
Precipitation is a key driving factor of hydrologic modeling for impact studies. However, there are challenges due to limited long-term data availability and complex parameterizations of existing stochastic weather generators (SWGs) due to spatiotemporal uncertainty. We introduced state-of-the-art...
Saved in:
Main Authors: | , , , , |
---|---|
格式: | Article |
語言: | English |
出版: |
Elsevier Ltd.
2024
|
主題: | |
在線閱讀: | http://ir.unimas.my/id/eprint/44860/2/Implementing%20generative.pdf http://ir.unimas.my/id/eprint/44860/ https://www.sciencedirect.com/science/article/pii/S1364815223002827 https://doi.org/10.1016/j.envsoft.2023.105896 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|