Implementing generative adversarial network (GAN) as a data-driven multi-site stochastic weather generator for flood frequency estimation

Precipitation is a key driving factor of hydrologic modeling for impact studies. However, there are challenges due to limited long-term data availability and complex parameterizations of existing stochastic weather generators (SWGs) due to spatiotemporal uncertainty. We introduced state-of-the-art...

全面介紹

Saved in:
書目詳細資料
Main Authors: Ji, Hong Kang, Majid, Mirzaei, Lai, Sai Hin, Adnan, Dehghani, Amin, Dehghani
格式: Article
語言:English
出版: Elsevier Ltd. 2024
主題:
在線閱讀:http://ir.unimas.my/id/eprint/44860/2/Implementing%20generative.pdf
http://ir.unimas.my/id/eprint/44860/
https://www.sciencedirect.com/science/article/pii/S1364815223002827
https://doi.org/10.1016/j.envsoft.2023.105896
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!