Implementing generative adversarial network (GAN) as a data-driven multi-site stochastic weather generator for flood frequency estimation
Precipitation is a key driving factor of hydrologic modeling for impact studies. However, there are challenges due to limited long-term data availability and complex parameterizations of existing stochastic weather generators (SWGs) due to spatiotemporal uncertainty. We introduced state-of-the-art...
保存先:
主要な著者: | , , , , |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Elsevier Ltd.
2024
|
主題: | |
オンライン・アクセス: | http://ir.unimas.my/id/eprint/44860/2/Implementing%20generative.pdf http://ir.unimas.my/id/eprint/44860/ https://www.sciencedirect.com/science/article/pii/S1364815223002827 https://doi.org/10.1016/j.envsoft.2023.105896 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|