Implementing generative adversarial network (GAN) as a data-driven multi-site stochastic weather generator for flood frequency estimation

Precipitation is a key driving factor of hydrologic modeling for impact studies. However, there are challenges due to limited long-term data availability and complex parameterizations of existing stochastic weather generators (SWGs) due to spatiotemporal uncertainty. We introduced state-of-the-art...

詳細記述

保存先:
書誌詳細
主要な著者: Ji, Hong Kang, Majid, Mirzaei, Lai, Sai Hin, Adnan, Dehghani, Amin, Dehghani
フォーマット: 論文
言語:English
出版事項: Elsevier Ltd. 2024
主題:
オンライン・アクセス:http://ir.unimas.my/id/eprint/44860/2/Implementing%20generative.pdf
http://ir.unimas.my/id/eprint/44860/
https://www.sciencedirect.com/science/article/pii/S1364815223002827
https://doi.org/10.1016/j.envsoft.2023.105896
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!