PREDICTIVE VOLTAGE CONTROL DC-AC QUASI- Z-SOURCE INVERTER USING SECOND ORDER RLC FILTER

This project focuses on Predictive Voltage Control dc-ac Quasi-Z-source Inverter using Second Order Filter. The proposed topology is a combination of dc-dc converter, H-bridge inverter and second order filter. The dc-dc converter is used to boost up the dc voltage throughout in this project. This is...

詳細記述

保存先:
書誌詳細
第一著者: Teh, Xuan Yuan
フォーマット: Final Year Project Report
言語:English
English
出版事項: Universiti Malaysia Sarawak, (UNIMAS) 2019
主題:
オンライン・アクセス:http://ir.unimas.my/id/eprint/34344/1/PREDICTIVE%20VOLTAGE%20CONTROL%20DC-AC%20QUASI-%20Z-SOURCE24pgs.pdf
http://ir.unimas.my/id/eprint/34344/4/Teh%20Xuan%20Yuan%20ft.pdf
http://ir.unimas.my/id/eprint/34344/
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
その他の書誌記述
要約:This project focuses on Predictive Voltage Control dc-ac Quasi-Z-source Inverter using Second Order Filter. The proposed topology is a combination of dc-dc converter, H-bridge inverter and second order filter. The dc-dc converter is used to boost up the dc voltage throughout in this project. This is due to the dc voltage produced by the renewable energy are always small. The H-bridge inverter is made of 4 IGBT transistor. The boost dc voltage will be the input of the H-bridge inverter. The major function of the H-bridge inverter is to convert the dc voltage to ac voltage. The Model Predictive Control is applied to the H-bridge inverter. The Model Predictive Control is used to predict the future behaviour of the system on the discrete model of the system. The mathematical system model and the cost function are the main elements of this switching control. The switching state is chosen based on the minimum cost function and will be used in the next sampling instant. The ac voltage produced by the H-bridge inverter is then filtered in order to have a small ripple of ac voltage waveform.