Application of self-organizing map to failure modes and effects analysis methodology
In this paper, a self-organizing map (SOM) neural network is used to visualize corrective actions of failure modes and effects analysis (FMEA). SOM is a popular unsupervised neural network model that aims to produce a low-dimensional map (typically a two-dimensional map) for visualizing high-dimensi...
保存先:
主要な著者: | Chang, Wuilee, Liew, Meng Pang, Tay, Kai Meng |
---|---|
フォーマット: | E-Article |
言語: | English |
出版事項: |
Elsevier
2017
|
主題: | |
オンライン・アクセス: | http://ir.unimas.my/id/eprint/15892/7/Application%20of%20self-organizing%20map%20to%20failure%20modes%20%28abstract%29.pdf http://ir.unimas.my/id/eprint/15892/ http://www.sciencedirect.com/science/article/pii/S0925231217305702 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
A New Monotone Fuzzy Rule Relabeling Framework With Application to Failure Mode and Effect Analysis Methodology
著者:: Tay, Kai Meng, 等
出版事項: (2020) -
A New Two-Stage Fuzzy Inference System-Based Approach to Prioritize Failures in Failure Mode and Effect Analysis
著者:: Tay, Kai Meng, 等
出版事項: (2015) -
On fuzzy inference system based failure mode and effect analysis (FMEA) methodology
著者:: Tay, Kai Meng
出版事項: (2009) -
A New Evolving Tree-Based Model with Local Re-learning for Document Clustering and Visualization
著者:: Chang, Wuilee, 等
出版事項: (2017) -
Clustering and visualization of failure modes using an evolving tree
著者:: Tay, Kai Meng, 等
出版事項: (2015)