Performance of modeling time series using nonlinear autoregressive with eXogenous input (NARX) in the network traffic forecasting
A time-series data analysis and prediction tool for learning the network traffic usage data is very important in order to ensure an acceptable and a good quality of network services can be provided to the organization (e.g., university). This paper presents the modeling using a nonlinear autoregress...
保存先:
類似資料
-
Predicting network traffic anomalies in Denial-of- service attacks – a nonlinear approach
著者:: Ding, Wei Lau, 等
出版事項: (2021) -
Traffic Efficiency Models for Urban Traffic Management Using Mobile Crowd Sensing: A Survey
著者:: Akbar Ali, 等
出版事項: (2021) -
Reliable priority based QoS real-time traffic routing in VANET: Open issues & parameter
著者:: Kashif Nisar, 等
出版事項: (2021) -
Rainfall intensity forecast using ensemble
artificial neural network and data fusion
for tropical climate
著者:: Mohd Safar, Noor Zuraidin, 等
出版事項: (2020) -
A concept for wildlife tracking using ultra high frequency (UHF) radio
著者:: Abdul Rahim, Mohd Zain
出版事項: (2014)