A novel hybrid of nonlinear sine cosine algorithm and safe experimentation dynamics for model order reduction

The current study introduces the hybridization of the Nonlinear Sine Cosine Algorithm (NSCA) and Safe Experimentation Dynamics (SED) as a novel optimization method for model order reduction of high-order single-input single-output (SISO) systems. Reciprocated synergism between both meta-heuristic al...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Mohd Helmi, Suid, Mohd Ashraf, Ahmad
التنسيق: مقال
اللغة:English
منشور في: Taylor & Francis 2023
الموضوعات:
الوصول للمادة أونلاين:http://umpir.ump.edu.my/id/eprint/38259/1/A%20novel%20hybrid%20of%20Nonlinear%20Sine%20Cosine%20Algorithm%20and%20Safe%20Experimentation%20Dynamics%20for%20model%20order%20reduction.pdf
http://umpir.ump.edu.my/id/eprint/38259/
https://doi.org/10.1080/00051144.2022.2098085
https://doi.org/10.1080/00051144.2022.2098085
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:The current study introduces the hybridization of the Nonlinear Sine Cosine Algorithm (NSCA) and Safe Experimentation Dynamics (SED) as a novel optimization method for model order reduction of high-order single-input single-output (SISO) systems. Reciprocated synergism between both meta-heuristic algorithms is achieved by appropriating the nonlinear position-updated mechanism of NSCA for enhanced exploration/exploitation competencies and proficiency of SED in maximizing stagnation avoidance within the local optima. Named the NSCA-SED algorithm, the applicability of the proposed method is assessed by scholastic adoption of a sixth-order numerical transfer function towards two independent high-order systems enclosing Double-Pendulum Overhead Crane and Flexible Manipulator. Experimentation results further suggested NSCA-SED as the superior alternative in terms of execution robustness and consistency excellence against other available optimization-based methods for tackling model order reduction. Exemplified simulations sequentially demonstrated considerable improvements by the employment of NSCA-SED over conventional SCA following respective enhanced proportions of 97.17%, 13.17% and 29.03% for Example 1, Example 2 and Example 3.