A Critical Review on Selected Fuzzy Min-Max Neural Networks and Their Significance and Challenges in Pattern Classification
At present, pattern classification is one of the most important aspects of establishing machine intelligence systems for tackling decision-making processes. The fuzzy min-max (FMM) neural network combines the operations of an artificial neural network and fuzzy set theory into a common framework. FM...
保存先:
主要な著者: | Alhroob, Essam, Mohammed, Mohammed Falah, Lim, Chee Peng, Tao, Hai |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
IEEE
2019
|
主題: | |
オンライン・アクセス: | http://umpir.ump.edu.my/id/eprint/25102/1/A%20Critical%20Review%20on%20Selected%20Fuzzy%20Min-Max.pdf http://umpir.ump.edu.my/id/eprint/25102/ https://doi.org/10.1109/ACCESS.2019.2911955 https://doi.org/10.1109/ACCESS.2019.2911955 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
A flexible enhanced fuzzy min-max neural network for pattern classification
著者:: Alhroob, Essam, 等
出版事項: (2024) -
A survey of fuzzy min max neural networks for pattern classification: variants and applications
著者:: Al Sayaydeh, Osama Nayel, 等
出版事項: (2018) -
Fuzzy Min-Max Classifier Based on New Membership Function for Pattern Classification: A Conceptual Solution
著者:: Alhroob, Essam, 等
出版事項: (2018) -
Improving the Fuzzy Min-Max Neural Network with a K-nearest Hyperbox Expansion Rule for Pattern Classification
著者:: Mohammed, Mohammed Falah, 等
出版事項: (2017) -
An Ensemble of Enhanced Fuzzy Min Max Neural Networks for Data Classification
著者:: Mohammed, Mohammed Falah, 等
出版事項: (2017)