A Critical Review on Selected Fuzzy Min-Max Neural Networks and Their Significance and Challenges in Pattern Classification
At present, pattern classification is one of the most important aspects of establishing machine intelligence systems for tackling decision-making processes. The fuzzy min-max (FMM) neural network combines the operations of an artificial neural network and fuzzy set theory into a common framework. FM...
محفوظ في:
المؤلفون الرئيسيون: | Alhroob, Essam, Mohammed, Mohammed Falah, Lim, Chee Peng, Tao, Hai |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
IEEE
2019
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://umpir.ump.edu.my/id/eprint/25102/1/A%20Critical%20Review%20on%20Selected%20Fuzzy%20Min-Max.pdf http://umpir.ump.edu.my/id/eprint/25102/ https://doi.org/10.1109/ACCESS.2019.2911955 https://doi.org/10.1109/ACCESS.2019.2911955 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
A flexible enhanced fuzzy min-max neural network for pattern classification
بواسطة: Alhroob, Essam, وآخرون
منشور في: (2024) -
A survey of fuzzy min max neural networks for pattern classification: variants and applications
بواسطة: Al Sayaydeh, Osama Nayel, وآخرون
منشور في: (2018) -
Fuzzy Min-Max Classifier Based on New Membership Function for Pattern Classification: A Conceptual Solution
بواسطة: Alhroob, Essam, وآخرون
منشور في: (2018) -
Improving the Fuzzy Min-Max Neural Network with a K-nearest Hyperbox Expansion Rule for Pattern Classification
بواسطة: Mohammed, Mohammed Falah, وآخرون
منشور في: (2017) -
An Ensemble of Enhanced Fuzzy Min Max Neural Networks for Data Classification
بواسطة: Mohammed, Mohammed Falah, وآخرون
منشور في: (2017)