An oppositional learning prediction operator for simulated kalman filter

Simulated Kalman filter (SKF) is a recent metaheuristic optimization algorithm established in 2015. In the present study, we introduce a prediction operator in SKF to prolong its exploration and to avoid premature convergence. The proposed prediction operator is based on oppositional learning. The r...

全面介紹

Saved in:
書目詳細資料
Main Authors: Zuwairie, Ibrahim, Kamil Zakwan, Mohd Azmi, Badaruddin, Muhammad, Mohd Falfazli, Mat Jusof, Nor Azlina, Alias, Nor Hidayati, Abdul Aziz, Mohd Ibrahim, Shapiai
格式: Conference or Workshop Item
語言:English
English
出版: 2018
主題:
在線閱讀:http://umpir.ump.edu.my/id/eprint/22171/1/9.%20An%20Oppostional%20Learning%20Prediction%20Operator%20For%20Simulated%20Kalman%20Filter.pdf
http://umpir.ump.edu.my/id/eprint/22171/2/9.1%20An%20Oppostional%20Learning%20Prediction%20Operator%20For%20Simulated%20Kalman%20Filter.pdf
http://umpir.ump.edu.my/id/eprint/22171/
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Simulated Kalman filter (SKF) is a recent metaheuristic optimization algorithm established in 2015. In the present study, we introduce a prediction operator in SKF to prolong its exploration and to avoid premature convergence. The proposed prediction operator is based on oppositional learning. The results show that using CEC2014 as benchmark problems, the SKF algorithm with oppositional learning prediction operator outperforms the original SKF algorithm in most cases.