Performance evaluation of random search based methods on model-free wind farm control

This paper investigates the performance of Sequential Random Search (SRS), Fixed Step Size Random search (FSSRS), Optimized Relative Step Size Random Search (ORSSRS) and Adaptive Step Size Random Search (ASSRS) methods on maximizing offshore wind farms power production. The RS based methods are used...

詳細記述

保存先:
書誌詳細
主要な著者: Hao, Mok Ren, Mohd Ashraf, Ahmad, Raja Mohd Taufika, Raja Ismail, Ahmad Nor Kasruddin, Nasir
フォーマット: 図書の章
言語:English
English
出版事項: Springer Singapore 2018
主題:
オンライン・アクセス:http://umpir.ump.edu.my/id/eprint/21638/1/book43.%20Performance%20Evaluation%20of%20Random%20Search%20Based%20Methods.pdf
http://umpir.ump.edu.my/id/eprint/21638/2/book43.1%20Performance%20Evaluation%20of%20Random%20Search%20Based%20Methods.pdf
http://umpir.ump.edu.my/id/eprint/21638/
https://link.springer.com/chapter/10.1007%2F978-981-10-8788-2_60
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
その他の書誌記述
要約:This paper investigates the performance of Sequential Random Search (SRS), Fixed Step Size Random search (FSSRS), Optimized Relative Step Size Random Search (ORSSRS) and Adaptive Step Size Random Search (ASSRS) methods on maximizing offshore wind farms power production. The RS based methods are used to tune the control parameter of each turbine to its optimum until the wind farm total power production is maximized. The validation of this investigation is performed using the Horns Rev wind farm model with turbulence interaction between turbines. Simulation results show that Optimized Relative Step Size Random Search (ORSSRS) produces higher total power production as compared to other types of RS based methods.