A New Hybrid Gravitational Search- Black Hole Algorithm

This paper studies the solution of optimization problems using a new hybrid population-based algorithm. The Gravitational Search – Black Hole Algorithm (GSBHA) is proposed as a combination of the Black Hole Algorithm (BHA) and Gravitational Search Algorithm (GSA). The main idea is to improve the st...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Suad Khairi, Mohammed, Zuwairie, Ibrahim, Hamdan, Daniyal, Nor Azlina, Ab. Aziz
التنسيق: Conference or Workshop Item
اللغة:English
منشور في: Universiti Malaysia Pahang 2016
الموضوعات:
الوصول للمادة أونلاين:http://umpir.ump.edu.my/id/eprint/15750/1/P113%20pg834-842.pdf
http://umpir.ump.edu.my/id/eprint/15750/
http://ee.ump.edu.my/ncon/wp-content/uploads/2016/10/Proceeding-NCON-PGR-2016.zip
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:This paper studies the solution of optimization problems using a new hybrid population-based algorithm. The Gravitational Search – Black Hole Algorithm (GSBHA) is proposed as a combination of the Black Hole Algorithm (BHA) and Gravitational Search Algorithm (GSA). The main idea is to improve the standard BHA by using GSA. To evaluate the performance of GSBHA, standard test functions of CEC 2014 for real-parameters are used to compare the hybrid algorithm with both the standard BHA and GSA algorithms in evolving the best solution. The results obtained demonstrate better performance of the hybrid algorithm and better capability to escape from local optimums with faster convergence than the standard BHA and GSA.