A neighbourhood undersampling stacked ensemble with H-measure maximising meta-learner for imbalanced classification / Seng Zian
Stacked ensemble formulates an ensemble using a meta-learner to combine (stack) the predictions of multiple base classifiers. It suffers from the problem of suboptimal performance in imbalanced classification. Several underlying difficulty factors are reported to be responsible for performance de...
保存先:
第一著者: | Seng , Zian |
---|---|
フォーマット: | 学位論文 |
出版事項: |
2021
|
主題: | |
オンライン・アクセス: | http://studentsrepo.um.edu.my/14776/1/Seng_Zian.pdf http://studentsrepo.um.edu.my/14776/2/Seng_Zian.pdf http://studentsrepo.um.edu.my/14776/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
A neighborhood undersampling stacked ensemble (NUS-SE) in imbalanced classification
著者:: Seng, Zian, 等
出版事項: (2021) -
An empirical evaluation of stacked ensembles with different meta-learners in imbalanced classification
著者:: Zian, Seng, 等
出版事項: (2021) -
Fuzzy distance-based undersampling technique for imbalanced flood data
著者:: Ku-Mahamud, Ku Ruhana, 等
出版事項: (2016) -
Ensemble classifier and resampling for imbalanced multiclass learning
著者:: Sainin, Mohd Shamrie, 等
出版事項: (2015) -
A conceptual model of enhanced undersampling technique
著者:: Zorkeflee, Maisarah, 等
出版事項: (2014)