Cluster merging based on weighted Mahalanobis distance with application in digital mammography
A new clustering algorithm that uses a weighted Mahalanobis distance as a distance metric to perform partitional clustering is proposed. The covariance matrices of the generated clusters are used to determine cluster similarity and closeness so that clusters which are similar in shape and close in M...
محفوظ في:
المؤلفون الرئيسيون: | Younis, K., Karim, M., Hardie, R., Loomis, J., Rogers, S., DeSimio, M. |
---|---|
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
IEEE
1998
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.um.edu.my/8810/1/Cluster_merging_based_on_weighted_Mahalanobis_distance_with_application_in_digital_mammography.pdf http://eprints.um.edu.my/8810/ http://www.scopus.com/inward/record.url?eid=2-s2.0-0032306128&partnerID=40&md5=abd392ca5b0b1c59a4f056f67ba795c1 http://ieeexplore.ieee.org/xpls/absall.jsp?arnumber=710194&tag=1 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Understanding Mahalanobis Distance Criterion for Feature Selection
بواسطة: Maz Jamilah, Masnan, وآخرون
منشور في: (2015) -
Understanding Mahalanobis distance criterion for feature selection
بواسطة: Masnan, Maz Jamilah, وآخرون
منشور في: (2015) -
Noise power spectrum of computer mammography and full field digital mammography
بواسطة: Abd. Ghani, Faezeah
منشور في: (2014) -
Noise power spectrum of computed mammography and full field digital mammography
بواسطة: Abd. Ghani, Faezeah
منشور في: (2014) -
Determining number of clusters using firefly algorithm with cluster merging for text clustering
بواسطة: Mohammed, Athraa Jasim, وآخرون
منشور في: (2015)