Thermoluminescence yield of neutron irradiated Gd:Mg-Doped silica glass
The thermoluminescence yield of silica glass doped with Gd2O3 and MgO is investigated as a potential material for neutron dose measurement. The dosimetric materials used herein were prepared via the sol-gel route with concentration of rare earth metal oxides varying from 1 to 10 mol%. Reactor irradi...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
格式: | Article |
出版: |
Elsevier
2023
|
主題: | |
在線閱讀: | http://eprints.um.edu.my/39424/ |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
總結: | The thermoluminescence yield of silica glass doped with Gd2O3 and MgO is investigated as a potential material for neutron dose measurement. The dosimetric materials used herein were prepared via the sol-gel route with concentration of rare earth metal oxides varying from 1 to 10 mol%. Reactor irradiations were made at 750 kW thermal power, producing thermal, epi-thermal and fast neutron fluxes of 5.61 x 10(12), 2.51 x 10(12), 2.58 x 10(12) n/cm(-2).s(-1), respectively. It has been found that 1 mol% Gd:Mg doped SiO2 exhibits excellent dosimetric response over the entire dose range investigated, obtaining a regression coefficient in excess of 96%. The thermoluminescence (TL) glow curves have been deconvolved, at best fit yielding a total of six peaks, the associated activation energies and frequency factors also being obtained. The results indicate sol-gel Gd:Mg doped SiO2 to offer promising performance as a low-cost passive radiation dosimeter, with utility for both radiotherapy and industrial applications. |
---|