A Kernel Bayesian Adaptive Resonance Theory with A Topological Structure
This paper attempts to solve the typical problems of self-organizing growing network models, i.e. (a) an influence of the order of input data on the self-organizing ability, (b) an instability to high-dimensional data and an excessive sensitivity to noise, and (c) an expensive computational cost by...
保存先:
主要な著者: | Masuyama, Naoki, Loo, Chu Kiong, Wermter, Stefan |
---|---|
フォーマット: | 論文 |
出版事項: |
World Scientific Publishing
2019
|
主題: | |
オンライン・アクセス: | http://eprints.um.edu.my/24040/ https://doi.org/10.1142/S0129065718500521 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Kernel Bayesian ART and ARTMAP
著者:: Masuyama, Naoki, 等
出版事項: (2018) -
Topological Clustering via Adaptive Resonance Theory With Information Theoretic Learning
著者:: Masuyama, Naoki, 等
出版事項: (2019) -
Divisive hierarchical clustering based on adaptive resonance theory
著者:: Yamada, Yuna, 等
出版事項: (2020) -
Privacy-Preserving Continual Federated Clustering via Adaptive Resonance Theory
著者:: Masuyama, Naoki, 等
出版事項: (2024) -
Recurrent Kernel Extreme Reservoir Machine for Time Series Prediction
著者:: Liu, Zongying, 等
出版事項: (2018)