The number of subgroups of a direct product of cyclic p-groups
For a prime p and positive integer n, let Cp (n) and Cp (n) denote the elementary abelian p-group of order pn and the cyclic group of order pn, respectively. In this paper, we obtain an explicit formula for determining the number of subgroups of the direct product Cp (r) ×Cps where r and s are posit...
保存先:
主要な著者: | , , |
---|---|
フォーマット: | 論文 |
出版事項: |
Charles Babbage Research Centre
2018
|
主題: | |
オンライン・アクセス: | http://eprints.um.edu.my/22238/ http://combinatorialmath.ca/ArsCombinatoria/Vol139.html |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
要約: | For a prime p and positive integer n, let Cp (n) and Cp (n) denote the elementary abelian p-group of order pn and the cyclic group of order pn, respectively. In this paper, we obtain an explicit formula for determining the number of subgroups of the direct product Cp (r) ×Cps where r and s are positive integers. |
---|