The Integration of Nature-Inspired Algorithms with Least Square Support Vector Regression Models: Application to Modeling River Dissolved Oxygen Concentration
The current study investigates an improved version of Least Square Support Vector Machines integrated with a Bat Algorithm (LSSVM-BA) for modeling the dissolved oxygen (DO) concentration in rivers. The LSSVM-BA model results are compared with those obtained using M5 Tree and Multivariate Adaptive Re...
保存先:
主要な著者: | Yaseen, Zaher, Ehteram, Mohammad, Sharafati, Ahmad, Shahid, Shamsuddin, Al-Ansari, Nadhir, El-Shafie, Ahmed |
---|---|
フォーマット: | 論文 |
出版事項: |
MDPI
2018
|
主題: | |
オンライン・アクセス: | http://eprints.um.edu.my/20306/ https://doi.org/10.3390/w10091124 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
The integration of nature-inspired algorithms with Least Square Support Vector regression models: application to modeling river dissolved oxygen concentration
著者:: Yaseen, Z. M., 等
出版事項: (2018) -
Determination of biochemical oxygen demand and dissolved oxygen for semi-arid river environment: application of soft computing models
著者:: Tao, Hai, 等
出版事項: (2019) -
Prediction of dissolved oxygen, biochemical oxygen demand, and chemical oxygen demand using hydrometeorological variables: case study of Selangor River, Malaysia
著者:: Salih, Sinan Q., 等
出版事項: (2020) -
Determination of biochemical oxygen demand and dissolved oxygen for semi-arid river environment: application of soft computing models
著者:: Tao H., 等
出版事項: (2023) -
Self organizing map and least square support vector machine method for river flow modelling
著者:: Ismail, Shuhaida
出版事項: (2011)