The Integration of Nature-Inspired Algorithms with Least Square Support Vector Regression Models: Application to Modeling River Dissolved Oxygen Concentration
The current study investigates an improved version of Least Square Support Vector Machines integrated with a Bat Algorithm (LSSVM-BA) for modeling the dissolved oxygen (DO) concentration in rivers. The LSSVM-BA model results are compared with those obtained using M5 Tree and Multivariate Adaptive Re...
محفوظ في:
المؤلفون الرئيسيون: | Yaseen, Zaher, Ehteram, Mohammad, Sharafati, Ahmad, Shahid, Shamsuddin, Al-Ansari, Nadhir, El-Shafie, Ahmed |
---|---|
التنسيق: | مقال |
منشور في: |
MDPI
2018
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.um.edu.my/20306/ https://doi.org/10.3390/w10091124 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
The integration of nature-inspired algorithms with Least Square Support Vector regression models: application to modeling river dissolved oxygen concentration
بواسطة: Yaseen, Z. M., وآخرون
منشور في: (2018) -
Determination of biochemical oxygen demand and dissolved oxygen for semi-arid river environment: application of soft computing models
بواسطة: Tao, Hai, وآخرون
منشور في: (2019) -
Prediction of dissolved oxygen, biochemical oxygen demand, and chemical oxygen demand using hydrometeorological variables: case study of Selangor River, Malaysia
بواسطة: Salih, Sinan Q., وآخرون
منشور في: (2020) -
Determination of biochemical oxygen demand and dissolved oxygen for semi-arid river environment: application of soft computing models
بواسطة: Tao H., وآخرون
منشور في: (2023) -
Self organizing map and least square support vector machine method for river flow modelling
بواسطة: Ismail, Shuhaida
منشور في: (2011)