The thermal stability of the potassium metal catalyst supported by activated carbon / Nor Ain Natasya Aziz

A material is thermally stable if a substance doesn’t break down when heated up. The thermal stability of a substance can be determined using a thermogravimetric analyser (TGA). Catalyst is a substance that initiates and increases a chemical reaction without changing the reaction itself. Due to high...

詳細記述

保存先:
書誌詳細
第一著者: Aziz, Nor Ain Natasya
フォーマット: Student Project
言語:English
出版事項: 2023
主題:
オンライン・アクセス:https://ir.uitm.edu.my/id/eprint/78401/1/78401.pdf
https://ir.uitm.edu.my/id/eprint/78401/
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
その他の書誌記述
要約:A material is thermally stable if a substance doesn’t break down when heated up. The thermal stability of a substance can be determined using a thermogravimetric analyser (TGA). Catalyst is a substance that initiates and increases a chemical reaction without changing the reaction itself. Due to high temperature, there is a limit to how many times the catalyst can be used before it become worn out or turn to ashes. This study focuses on determining the effects of temperature on the mass loss of carbonized oil palm kernel shell (OPKS) and the mass loss of potassium metal catalyst in ratio potassium to activated carbon of 1:1, 1:3 and 1:4. There are three steps involved in this study. The OPKS needs to undergo the preparation of the raw materials where the OPKS needs to be cleaned after being collected from the palm oil industry. Then, the OPKS will be put into the furnace for physical activation and turned into activated carbon. Lastly, the process was continued with the wet impregnation step for catalyst preparation and calcination process. The thermal stability test was run at temperature of 25℃ - 1000℃ from the TGA showed that 1:3 is the best ratio of K/AC catalyst with good thermal stability and lowest mass loss. Thus, the result concludes that the best catalyst can be used when dealing with fatty acid methyl ester transesterification.