A machine learning approach to assess magnitude of asynchrony breathing

Background: Conventional patient-ventilator interaction (PVI) assessment involves manual asynchronous index (AI) computation and incapable to provide in-depth information of the severity of asynchrony breathing (AB) during mechanical ventilation (MV). In this study, a novel convolutional autoencod...

詳細記述

保存先:
書誌詳細
主要な著者: Loo, Nienloong, Chiew, Yeong Shiong, Tan, Chee Pin, Mat Nor, Mohd Basri, Md Ralib, Azrina
フォーマット: 論文
言語:English
English
出版事項: Elsevier Ltd. 2021
主題:
オンライン・アクセス:http://irep.iium.edu.my/89103/7/89103_A%20machine%20learning%20approach%20to%20assess%20magnitude%20of%20asynchrony%20breathing%20-%20Loo.pdf
http://irep.iium.edu.my/89103/8/89103_Scopus%20-%20A%20machine%20learning%20approach%20to.pdf
http://irep.iium.edu.my/89103/
https://www.sciencedirect.com/science/article/abs/pii/S1746809421001026?via%3Dihub
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!