Detection of sweetness level for fruits (watermelon) with machine learning
The inspection and grading of the watermelon are done manually but it is a tedious job and it is difficult for the graders to maintain constant vigilance. Thus, the image processing has widely been used for identification, detection, grading and quality evaluation in the agricultural field. The...
保存先:
主要な著者: | Wan Nazulan, Wan Nurul Suraya, Asnawi, Ani Liza, Mohd Ramli, Huda Adibah, Jusoh, Ahmad Zamani, Ibrahim, Siti Noorjannah, Mohamed Azmin, Nor Fadhillah |
---|---|
フォーマット: | Conference or Workshop Item |
言語: | English English |
出版事項: |
IEEE
2020
|
主題: | |
オンライン・アクセス: | http://irep.iium.edu.my/86522/7/86522_Detection%20of%20Sweetness%20Level%20for%20Fruits%20_new.pdf http://irep.iium.edu.my/86522/13/86522_Detection%20of%20Sweetness%20Level%20for%20Fruits_scopus.pdf http://irep.iium.edu.my/86522/ https://ieeexplore.ieee.org/document/9289712 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Stress Classification based on Speech Analysis of MFCC Feature via Machine Learning
著者:: Hilmy, Muhammad Syazani Hafiy, 等
出版事項: (2021) -
Machine learning approach for stress detection based on alpha-beta and theta-beta ratios of EEG signals
著者:: Altaf, Hunain, 等
出版事項: (2021) -
Boosting of fruit choices using machine learning‑based pomological recommendation system
著者:: Dutta, Monica, 等
出版事項: (2023) -
The needs of collaborative tool for practicing pair
programming in educational setting
著者:: Asnawi, Ani Liza, 等
出版事項: (2019) -
Comparison of X-band satellite link measurements with radar derived rain attenuation in the tropics
著者:: Badron, Khairayu, 等
出版事項: (2014)