Development of real-time pose estimation algorithm for Quranic Arabic word

The study carried out in this report proposes the best keypoint detection, description, and pose estimation algorithm combination for Quranic Arabic words. Oriented-FAST Rotated-BRIEF (ORB) and Accelerated-KAZE (AKAZE) are used as the keypoint detection and description algorithms while Random Sample...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Mohd Esa, Luqman Naim, Morshidi, Malik Arman, Mohd Zailani, Syarah Munirah
التنسيق: مقال
اللغة:English
English
English
منشور في: Institute of Advanced Engineering and Science (IAES) 2017
الموضوعات:
الوصول للمادة أونلاين:http://irep.iium.edu.my/60356/3/AcceptanceEmail.pdf
http://irep.iium.edu.my/60356/9/60356_Development%20of%20real-time%20pose%20estimation%20algorithm%20.pdf
http://irep.iium.edu.my/60356/15/60356_Development%20of%20real-time%20pose%20estimation%20algorithm%20for%20Quranic%20Arabic%20word_scopus.pdf
http://irep.iium.edu.my/60356/
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:The study carried out in this report proposes the best keypoint detection, description, and pose estimation algorithm combination for Quranic Arabic words. Oriented-FAST Rotated-BRIEF (ORB) and Accelerated-KAZE (AKAZE) are used as the keypoint detection and description algorithms while Random Sample Consensus (RANSAC) and Least Median Squares (LMEDS) are used to evaluate the homography for pose estimation algorithms. The algorithms are combined with each other to provide four different techniques to estimate the pose of Quranic Arabic words. The algorithms are tested on a limited dataset chosen from a phrase within the Quran. Performance of each algorithm is measured in real-time through inlier to keypoint ratio which determines pose accuracy.