An unsupevised package for multi-spectral image processing for remote data

The ability to match digital images and technique combination in the computer world had revolutionalised the trend. This paper researched on the unsupervised classification of the Multi-Spectral Image. All the two classes under the unsupervised classification were presented and explained. That is th...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Zaid, Muhsin A., Zeki, Akram M.
التنسيق: مقال
اللغة:English
منشور في: Design for Scientific Renaissance 2015
الموضوعات:
الوصول للمادة أونلاين:http://irep.iium.edu.my/49596/1/1249-2938-1-PB.pdf
http://irep.iium.edu.my/49596/
http://www.sign-ific-ance.co.uk/index.php/JACSTR/article/view/1249
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:The ability to match digital images and technique combination in the computer world had revolutionalised the trend. This paper researched on the unsupervised classification of the Multi-Spectral Image. All the two classes under the unsupervised classification were presented and explained. That is the K-Means (KM) and Kohonen Neural Network (KNN). A package for Multi-Spectral Images is designed with the ability to read data, apply Principal Component Analysis (PCA) as a feature extraction, then apply False Colour Composite (FCC) as one of the classification techniques in multi-spectral images. The unsupervised classification method is considered throughout in this research.