Malaria severity classification through Jordan-Elman neural network based on features extracted from thick blood smear
This article presents an alternative approach useful for medical prac- titioners who wish to detect malaria and accurately identify the level of severity. Malaria classifiers are usually based on feed forward neural networks. In this study, the proposed classifier is developed based on the Jordan...
保存先:
主要な著者: | , , , , , , , |
---|---|
フォーマット: | 論文 |
言語: | English English |
出版事項: |
Czech Technical University in Prague, Faculty of Transportation Sciences
2015
|
主題: | |
オンライン・アクセス: | http://irep.iium.edu.my/46647/1/NNW.2015.25.028.pdf http://irep.iium.edu.my/46647/4/46647_Malaria_severity_classification_through_Jordan-Elman_neural_network_WOS.pdf http://irep.iium.edu.my/46647/ http://khis.khu.ac.kr:9090/SummonRecord/FETCH-LOGICAL-p521-5050a2458441821306734c03fd8ca088b3a9662fe6f3e363cee8675633ac83f43 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
このレコードへの初めてのコメントを付けませんか!