Malaria severity classification through Jordan-Elman neural network based on features extracted from thick blood smear

This article presents an alternative approach useful for medical prac- titioners who wish to detect malaria and accurately identify the level of severity. Malaria classifiers are usually based on feed forward neural networks. In this study, the proposed classifier is developed based on the Jordan...

詳細記述

保存先:
書誌詳細
主要な著者: Haruna, Chiroma, Abdul kareem, Sameem, Umar, Ibrahim, Ahmad, Gadam, Abdulmumini , Garba, Abubakar, Adamu, Fatihu, Mukhtar, Herawan, Tutut
フォーマット: 論文
言語:English
English
出版事項: Czech Technical University in Prague, Faculty of Transportation Sciences 2015
主題:
オンライン・アクセス:http://irep.iium.edu.my/46647/1/NNW.2015.25.028.pdf
http://irep.iium.edu.my/46647/4/46647_Malaria_severity_classification_through_Jordan-Elman_neural_network_WOS.pdf
http://irep.iium.edu.my/46647/
http://khis.khu.ac.kr:9090/SummonRecord/FETCH-LOGICAL-p521-5050a2458441821306734c03fd8ca088b3a9662fe6f3e363cee8675633ac83f43
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
このレコードへの初めてのコメントを付けませんか!
この操作にはログインが必要です