Aerodynamic derivatives identification for ground vehicles in crosswind using neural network and PCA
Principal component analysis (PCA) is employed in this study to reduce the size of the neural network input node. Neural network is used to identify the ground vehicle aerodynamic derivatives based on a recorded simple harmonic motion of a ground vehicle model. The study involves the identification...
Saved in:
Main Authors: | Ramli, Nabilah, Jamaluddin, Hishamuddin, Mansor, Shuhaimi, Faris, Waleed Fekry |
---|---|
格式: | Article |
语言: | English |
出版: |
Inderscience Enterprises Ltd.
2010
|
主题: | |
在线阅读: | http://irep.iium.edu.my/4564/4/Aerodynamic_derivatives_identification_for_ground.pdf http://irep.iium.edu.my/4564/ http://www.inderscience.com/search/index.php?action=record&rec_id=33731 |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
Aerodynamic derivatives identification for ground vehicles in crosswind using neural network and PCA
由: Ramli, Nabilah, et al.
出版: (2010) -
Aerodynamic derivatives identification for ground vehicles in crosswind using neural network and PCA
由: Ramli, Nabilah, et al.
出版: (2010) -
Aerodynamics characteristics around simplified high speed train model under the effect of crosswinds
由: Mohd Salleh, Sufiah, et al.
出版: (2017) -
Investigation into noise problems in vehicle structure
using vibro-acoustic approach
由: Hanouf, Zahir Ahmad, et al.
出版: (2009) -
Kernel PCA – an introduction
由: Baali, Hamza, et al.
出版: (2011)