Classification of multichannel EEG signal by single layer perceptron learning algorithm

Motor imagery (MI) related Electroencephalogram (EEG) signal classification is one of the main challenge in designing a brain computer interface (BCI) system. Single Layer Perceptron Learning (SLPL) algorithm has a very low computational requirement which makes it suitable for online BCI system...

詳細記述

保存先:
書誌詳細
主要な著者: Hasan, Mohammad Rubaiyat, Ibrahimy, Muhammad Ibn, Motakabber, S. M. A., Shahid, Shahjahan
フォーマット: Conference or Workshop Item
言語:English
English
出版事項: 2014
主題:
オンライン・アクセス:http://irep.iium.edu.my/39001/1/39001_edited.pdf
http://irep.iium.edu.my/39001/4/39001_Classification%20of%20multichannel%20EEG%20signal_Scopus.pdf
http://irep.iium.edu.my/39001/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7031650
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
その他の書誌記述
要約:Motor imagery (MI) related Electroencephalogram (EEG) signal classification is one of the main challenge in designing a brain computer interface (BCI) system. Single Layer Perceptron Learning (SLPL) algorithm has a very low computational requirement which makes it suitable for online BCI system. This paper proposes an advanced and simple classification technique for MI related BCI system. Initially the signal is extracted for different features. The SLPL classifier has been used to propose technique to design an MI based BCI. For contrastive comparison with other classification techniques have been evaluated by classification accuracy, mutual information and Cohen’s kappa.