Classification of multichannel EEG signal by single layer perceptron learning algorithm

Motor imagery (MI) related Electroencephalogram (EEG) signal classification is one of the main challenge in designing a brain computer interface (BCI) system. Single Layer Perceptron Learning (SLPL) algorithm has a very low computational requirement which makes it suitable for online BCI system...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Hasan, Mohammad Rubaiyat, Ibrahimy, Muhammad Ibn, Motakabber, S. M. A., Shahid, Shahjahan
التنسيق: Conference or Workshop Item
اللغة:English
English
منشور في: 2014
الموضوعات:
الوصول للمادة أونلاين:http://irep.iium.edu.my/39001/1/39001_edited.pdf
http://irep.iium.edu.my/39001/4/39001_Classification%20of%20multichannel%20EEG%20signal_Scopus.pdf
http://irep.iium.edu.my/39001/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7031650
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Motor imagery (MI) related Electroencephalogram (EEG) signal classification is one of the main challenge in designing a brain computer interface (BCI) system. Single Layer Perceptron Learning (SLPL) algorithm has a very low computational requirement which makes it suitable for online BCI system. This paper proposes an advanced and simple classification technique for MI related BCI system. Initially the signal is extracted for different features. The SLPL classifier has been used to propose technique to design an MI based BCI. For contrastive comparison with other classification techniques have been evaluated by classification accuracy, mutual information and Cohen’s kappa.