Application ofWeibull Probability to Predict the Size of Inclusion in Metallic Material

Large inclusions can be the initiation site for fatigue failure in metal components. As melting processes are becoming more refined, the size of the inclusions falls below the level of detectability of the non-destructive testing methods. This final year project is divided into three parts. In th...

詳細記述

保存先:
書誌詳細
第一著者: Megat Shahair, Megat Atif
フォーマット: Final Year Project
言語:English
出版事項: Universiti Teknologi PETRONAS 2008
主題:
オンライン・アクセス:http://utpedia.utp.edu.my/9738/1/2008%20-%20Action%20of%20Weibull%20Probability%20to%20Pridict%20the%20Size%20of%20Inclusion%20in%20Metallic%20Material.pdf
http://utpedia.utp.edu.my/9738/
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
その他の書誌記述
要約:Large inclusions can be the initiation site for fatigue failure in metal components. As melting processes are becoming more refined, the size of the inclusions falls below the level of detectability of the non-destructive testing methods. This final year project is divided into three parts. In the first part of the project, Weibull probability was applied to predict largest oxide inclusion size and compare to the actual observation under scanning electron microscope. The results showed that Weibull probability prediction is accurate with margin of ± 3 microns. In the second part of project, the Weibull probability was tested using nodular cast iron. The nodules were measured for their true and apparent sizes, respectively. Based on the data, the effect on Weibull probability was found to be negligible. In the third part of the project, rotating fatigue test was performed under cantilevered loading by using two sets of medium carbon steel specimens. The specimens were annealed at 840 °C, held for one hour and furnace cooled before being polished and tested. Step-size method was selected where each specimen was subjected to 2.52 x 10 cycles at initial load of 5 N. The load was increased progressively until the specimen eventually fails. Only those specimens failed due too oxide inclusion at fatigue initiation site were regarded. Based on observational results, the two sets had different probability of survivalwhich corresponded to their respectively largestoxide inclusion size.